Source code for recursivenodes.utils

"""Utilities used by ``recursivenodes``.

.. testsetup:: *

    from recursivenodes.utils import *
"""

import numpy as np
from math import comb


[docs] def multiindex_equal(d, k): """A generator for :math:`d`-tuple multi-indices whose sum is :math:`k`. Args: d (int): The length of the tuples k (int): The sum of the entries in the tuples Yields: tuple: tuples of length `d` whose entries sum to `k`, in lexicographic order. Example: >>> for i in multiindex_equal(3, 2): print(i) (0, 0, 2) (0, 1, 1) (0, 2, 0) (1, 0, 1) (1, 1, 0) (2, 0, 0) """ if d <= 0: return if k < 0: return for i in range(k): for a in multiindex_equal(d-1, k-i): yield (i,) + a yield (k,) + (0,)*(d-1)
[docs] def multiindex_up_to(d, k): """A generator for :math:`d`-tuple multi-indices whose sum is at most :math:`k`. Args: d (int): The length of the tuples k (int): The maximum sum of the entries in the tuples Yields: tuple: tuples of length `d` whose entries sum to `k`, in lexicographic order. Example: >>> for i in multiindex_up_to(3, 2): print(i) (0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 2, 0) (1, 0, 0) (1, 0, 1) (1, 1, 0) (2, 0, 0) """ for a in multiindex_equal(d+1, k): yield a[0:d]
[docs] def multiindex_to_lex(alpha): """Get the lexicographic index of :math:`\\boldsymbol{\\alpha}` among all multiindices with the same length and sum. Args: alpha (tuple): A tuple of non-negative indices Returns: int: The index of :math:`\\boldsymbol{\\alpha}` in a lexicographically sorted list of multiindices with the same length and sum. Example: >>> multiindex_to_lex((1, 0, 1)) 3 """ d = len(alpha) if d <= 1: return 0 k = alpha[0] n = sum(alpha) # We want the number of multiindices where the sum over the tail of alpha # is greater than n-k but at most n, which is the sum over all multiindices # of lenth d-1 whose sum is at most n, minus those whose sum is at most # (n-k) prev = comb(n + (d-1), (d-1)) - comb((n-k) + (d-1), (d-1)) # Now we want the index of the tail in the list of all multiindices whose # first index is k kloc = multiindex_to_lex(alpha[1:]) return prev + kloc
[docs] def npolys(d, k): """The number of polynomials up to a degree :math:`k` in :math:`d` dimensions. Args: d (int): The dimension of the space. k (int): The polynomial degree. Returns: int: :math:`\\binom{k+d}{d}`. Example: >>> npolys(3, 2) 10 """ return comb(k+d, d)
def _equilateral_to_unit(d, x): if d > 1: # scale the vertical dimension x[..., d-1] /= ((d+1.)/(2*d))**0.5 # make the projection onto the lesser dimensions right-angled _equilateral_to_unit(d-1, x[..., 0:d-1]) # move the top vertex over first vertex x[..., 0:d-1] -= x[..., d-1, np.newaxis] / d def _to_unit(x, domain): if domain == 'unit': return x.copy() if domain == 'biunit': return (x + 1) / 2 if domain == 'barycentric': return x[..., 0:-1].copy() if domain == 'equilateral': d = x.shape[-1] z = x.copy() # scale edge length to 1 z /= 2 _equilateral_to_unit(d, z) z += 1/(d+1) # shift the first vertex to zero return z else: raise NotImplementedError def _unit_to_equilateral(d, x): if d > 1: # move the top vertex over the centroid x[..., 0:d-1] += x[..., d-1, np.newaxis] / d # make the projection onto the lesser dimensions equilateral _unit_to_equilateral(d-1, x[..., 0:d-1]) # scale the vertical dimension x[..., d-1] *= ((d+1.)/(2*d))**0.5 def _from_unit(x, domain): if domain == 'unit': return x.copy() if domain == 'biunit': return x*2 - 1 if domain == 'barycentric': z = 1 - x.sum(axis=-1) return np.concatenate((x, z[..., np.newaxis]), axis=-1) if domain == 'equilateral': d = x.shape[-1] z = x.copy() z -= 1/(d+1) # shift centroid to zero _unit_to_equilateral(d, z) # scale edge length to 2 z *= 2 return z else: raise NotImplementedError
[docs] def coord_map(x, origin, image): '''Map coordinates from one reference `d`-simplex to another. Args: x (ndarray): 2D array of coordinates of shape ``(num_points, coordinate_dimension)`` origin (str): Current domain of `x`, one of ``['unit', 'biunit', 'equilateral', 'barycentric']``. image (str): Desired domain of mapped coordinates. Returns: ndarray: 2D array of coordinates in the new domain, shape ``(num_points, new_coordinated_dimension)``. See Also: ":ref:`domains`" for formal definitions of the domains. ''' return _from_unit(_to_unit(x, domain=origin), domain=image)