quadrature¶
Quadrature nodes used in recursivenodes
.
- recursivenodes.quadrature.gaussjacobi(n, a=0.0, b=0.0)[source]¶
The \(n\)-point Gauss-Jacobi quadrature points and weights for weight function \((1+x)^a (1-x)^b\) for the interval [-1,1], which exactly integrates polynomials with degree up to \(2n-1\).
- Parameters:
n (int) – The number of points.
a (float, optional) – the left exponent of the weight function.
b (float, optional) – the right exponent of the weight function.
- Returns:
Each of shape (\(n\),), the points (in ascending order) and weights of the quadrature rule.
- Return type:
(ndarray, ndarray)
- Reference:
[GW69]
- recursivenodes.quadrature.lobattogaussjacobi(n, a=0.0, b=0.0)[source]¶
The \(n\)-point Lobatto-Gauss-Jacobi quadrature points and weights for weight function \((1+x)^a (1-x)^b\) for the interval [-1,1], which includes the endpoints \(-1\) and \(1\) and exactly integrates polynomials with degree up to \(2n-3\).
- Parameters:
n (int) – The number of points.
a (float, optional) – the left exponent of the weight function.
b (float, optional) – the right exponent of the weight function.
- Returns:
Each of shape (\(n\),), the points (in ascending order) and weights of the quadrature rule.
- Return type:
(ndarray, ndarray)
- Reference:
[Gol73]
- recursivenodes.quadrature.simplexgausslegendre(d, n)[source]¶
An \(n^d\)-point Gaussian quadrature rule for the biunit simplex that exactly integrates polynomials with degree up to \(2n-1\).
- Parameters:
d (int) – The spatial dimension.
n (int) – The points per coordinate direction
- Returns:
The points (shape (\(n, \dots, n, d\))) and weights (shape (\(n, \dots, n,\))) of the quadrature rule.
- Return type:
(ndarray, ndarray)